
r

A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange

Stephen Canfield*, David Johnson

Department of Mechanical Engineering
Tennessee Technological University

Cookeville, TN 38505

Kirk Sorensen, Ken Welzyn

TD40, TD 15

NASA Marshall Space Flight Center
Huntsville AL 35812

Abstract:

Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable

high-energy missions to the Moon, Mars and beyond by serving as an "upper stage in

space". Existing rockets that use an MXER tether station could double their capability to

launch communications satellites and help improve US competitiveness. A MXER tether

station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a

high-thrust rocket. Then, using the same principles that make an electric motor work, it

would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-

-without using any propellant. One of the significant challenges in developing a

momentum-exchange/electrodynamic reboost tether systems is in the analysis and design

of the capture mechanism and its effects on the overall dynamics of the system. This

paper will present a model for a momentum-exchange tether system that can simulate and

evaluate the performance and requirements of such a system.

1. Introduction:

Many uses for space tethers have been proposed and discussed in the literature (see for example

Beletsky and Levin [1], Carroll [2]). One area of proposed use is in creating an in-space payload
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transportation system. For example, Carroll [2] presented an early tether momentum transfer system that

functioned by changing the tether length in resonance with the in-plane libration frequency to accelerate a

payload. Hoyt, [3] and Forward [4] demonstrated a concept for performing momentum exchange

between a spinning tether and a payload to transfer the payload into a lunar orbit, with capture and release

of the payload performed at perigee of an elliptical tether orbit. Bangham, Lorenzini and Vestal [5]

analyzed both single and multiple spinning-tether systems for boosting payloads from low-earth to

geostationary orbits, with the multi-tether system offering the lowest mass. Hoyt et al. [6] and Hoyt [7]

demonstrated a single tether system for boosting payloads from a low Earth orbit to a geostationary orbit.

This system was designed to also provide transfer of payloads to lunar orbits and future transfer to the

Moon and Mars. Sorenesen [8] considered the results of the Tether transporation study (Bangham,

Lorenzini and Vestal [5]) and concluded that a non-equatorial, multi-tether system is nonviable due to

orbital regression. Sorensen also discussed the use of electrodynamic reboost for the tether facility,

described the tether/payload rendezvous, and presented a passive capture mechanism for the rendezvous

process.

One important issue in the early consideration of a tether momentum-exchange facility is the dynamic

behavior of the system. Several tether dynamic models have been presented in the literature, with a

number of commercial or applied tether model analyses developed. Misra and Modi [9], offer a thorough

review of the modeling approaches for electrodynamic tethers while continued work includes lumped-

bead formulations (Keshmiri and Misra [10]) hinged-rod models 0haig-Suari et al [11], Biswell et al

[12]), analytic models (Beatty and Haddow, [13]) and numerical techniques for simulating system partial

differential equations (Yokota, Bekele, and Steigrnann [14]). These models primarily consider single or

multi-chain electrodynamic tethers during deployment, flight and retrieval from a larger vehicle. In the

application of tether momentum exchange, a simulation of the nonlinear dynamic behavior of a free,

spinning tether system in orbit and during the momentum exchange process is of interest and the subject



of thispaper.Thispaperwill investigate the dynamics of the momentum exchange process based on a

spinning, orbiting tether facility and a passive capture mechanism as suggested by Sorensen [8]. The

paper will develop a model for this tether system based on a finite element approach and perform

subsequent simulation and analysis of the dynamics of the momentum exchange (MX) procedure. This

approach is based in part on the techniques of finite element analysis of dynamic systems demonstrated

for example by Meirovitch [15] and Nath and Ghosh [16]. The model will be general to allow a variety

of tether and capture element types to be included in the future, allowing the simulation to be used as a

design-guide in determining the parameters in a capture device. The model will be employed to simulate

the rendezvous process with the effects on the tether system examined and considered.

2. A Model for Tether Simulation

The dynamics of a flexible tether in space flight are evaluated using a finite element model

formulation of the continuous flexible tether system that will include expressions for the coriolis,

tangential and normal components of elastic accelerations. The objective of this dynamic model is to

observe the time response of the flexible system during tether flight and through the momentum exchange

process. This finite element dynamic model will represent the tether system as a series of cable elements,

each undergoing a combination of rigid body motion and axial elastic deformation and allowing free

rotation between adjacent cable elements. The finite element method will be applied to this system as a

means of representing the total tether motion as the motion of a continuous assembly of finite elements,

with each element representing a part of the tether system, and requiring continuity and compatibility

between connecting elements.

2.1 Finite Element Model

The finite element approach provides an approximate means to express the displacement of any point

within a continuous element in terms of the displacement of a finite number of nodes multiplied by a
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suitablesetof interpolation functions (Meirovitch [15]). The interpolation functions are typically selected

as a polynomial of order n, generally of low-degree, and are the same for all elements of a given type.

Use of these interpolation functions to describe element motion can then result in approximate solutions

for the governing partial differential equations for each element.

Consider the case of a single tether element in an equatorial orbit around the earth, shown in Fig. 1.

This element represents a small portion of the entire tether system divided into a series of similar

elements. The equations of motion will be derived for this representative tether element using the finite

element method approximations and Lagrange's equations, and will provide the basis to assemble a

system of similar elements and thus a complete tether system.

Figure 1: Tether element in equatorial Earth orbit

The location of particle dx on the tether element shown in fig. 1 is given by xo as:

xp (x,t) = x, (t)+ Re,e, (x + u(x,t)) Eq. 1
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withu(x,t) representing the elastic axial displacement of the element at point x along the element in time,

both described in the element frame, and ILjema suitable rotation operator expressing the displacements in

a uniform frame. Using the selected interpolation functions, the axial displacement can be written as

u(x,t)=l(x)ru(t) Eq. 2

with l(x) r =[L,(x) L2(x ) ...]r the interpolation functions and u(t)= [u, (t) u2(t ) ...]r the nodal

displacements in time. The particle position can be defined as a combination of these interpolation

Xp(X, t) = Xr (t)-_ Relem(X -I-i(X)TH(/)).

functions and nodal positions as,

Eq. 3

A set of generalized coordinates will be defined to describe the motion of the tether element. This set will

consist of the reference position, xr, the orientation of the element defined in a rotation operator, R, and

the nodal displacements, u. This vector of generalized coordinates, q, becomes

q = RI a

with R containing element rotation and _t defined as

lt=[x,_ x,y 1 u_ u2] r.

Eq. 4

Eq. 5

The position of any point along the element is then given as a combination of the interpolation functions,

cast into matrix form, L x and the generalized coordinates,

xp = LrRltt. Eq. 6

Note that L r contains the spatial dependencies along the tether length while R and _t are functions of

time. To proceed with Lagrange's equations, the Lagrangian must be formed as the combination of

kinetic energy and potential energy in the tether element. The kinetic energy is first defined over the

element,
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T= 2 p A dx 2 A dx Eq. 7

with I the tether element length A(x) the element cross section area and p(x) the element density. The

velocity of the tether element at location x is

ip = LTRI/+ LTRI_

with 1_ providing the angular velocity of the tether element frame.

generalized coordinate velocities into a single vector, li' as

i n = LTR'I/'

where R' is a general operator that gives velocity orientation.

This paper will consider tether motion in an equatorial plane.

coordinates for this planar case, in which la', L T and R' for element 1 become

_t = ['_m )[Try 0 _1 _'g2 Ul U2] T

i oxoLlo 0]1 0 x 0 L l 0 L 2
W

Eq. 8

This will be recast to combine the

Eq. 9

Figure 2 shows the generalized

-1 0 0 0 0 0 0

0 1 0 0 0 0 0

OOsO 0 0 0 0

OOcO 0 0 0 0

0 0 0 -sO 0 cO 0

0 0 0 cO 0 sO 0

0 0 0 0 -sO 0 c6

0 0 0 0 cO 0 sO

Eq. 10

Eq. 11

with L I -
1--X

l- --, L 2 = / defining a linear set of interpolation functions.
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Xp

x 1.

Figure 2: Generalized coordinates of a tether element

Using the expression of :ip given in Eq. 9, the kinetic energy can be rewritten as,

= : [
or

= lli'r R 'r m,R'! i' Eq.T 13

with m, the consistent element mass matrix determined from the interpolation matrix and element area

and density as

Eq. 14m, = ;p(x)A(x)LL Tdx.

This element mass matrix m, is shown for reference in the appendix. In a manner similar to evaluating

the kinetic energy, the potential energy of the tether element is evaluated. In this derivation, the potential

energy will consider strain energy in the element only, while gravitational potential along with other

external loads will be included in the generalized force. The potential energy in the element is given as

7



V=½ AE Eql5
Using the expression for Xpgiven in Eq. 6,

dx Eq. 161 AE(x = prRrk,Rpt

with A and E the element area and modulus, and I_ the element stiffness matrix evaluated as,

OL OL r

k, = _AE(x)-_x-_x dX. Eq. 17

The element stiffness matrix k, is given for reference in the appendix. The generalized force is

constructed next to represent external forces located at the nodes. This is derived from an expression of

the virtual work resulting from the gravitational loads and all nonconservative forces distributed over the

element,

b7¥: _f(x,t).6XpdX : _f(x,t)'LTJ(Rp)dx = F6(Rp)

with f(x,t) the external force distribution over the element and F the external nodal force given as:

Eq. 18

Eq. 19

Partial derivatives of the Lagrangian, _ = T- V, with respect to the generalized coordinates and their

time derivatives are evaluated next. In general form, the elements of Lagrange's equations are considered

as,

/c3V R 'r m_R' Eq. 20
/a(7,

• tT . • IT
d(_._/ __d(a_t'r/ R, r m,R, lft, d(aft'r/ _R,rm,R, li,+2c31tr/_z._ R, rm,R, li,+tgla% R, rm,R,_,
dt(,/Oq, J-dtt, /OO, =dt_, /8;t,) lye, ,_,

Eq. 21
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0_,'_// _,+_,,T0g,_/aVV_ = R 'r m_R' m,R'l _'-c_ r Rrk_Rit- Or aRt/ k,RI a
a/ oqiTZ- / Oq, / tgqi / tgq, / Oqi / aq,/aq,

Eq. 22

and the generalized force associated with qi is derived from the virtual work as,

Q' = Fe "(R a_{qi + c3R_/vq, It). Eq. 23

From these partial and time derivatives, the equations of motion for the element are assembled for each

generalized coordinate, i,

-_k /a?_,j /aq, =Q,

d(a#'r/ "_R,rm,R, ft,+2c_#% Wrm,R,#,+ 8#'r/_sq R, rm,R, ji,dt_. /aq,)

,,r tgRr/ k,Rltt = Qi_O_,r/ R, rm,R,_,_.,raR,r/ m,R,l_,+ala_q Rrk,Rla+_. /0q;/ Oqi tt / _gqi

for i =1 ... m, to result in m equations of motion with m the number of generalized coordinates.

Eq. 24

Eq. 25

After expanding the system of equations in Eq. 25 for each generalized coordinate and combining

accelerations, the equations of motion take on the general form

Me/i'+O, (q, Cl)_t'+K, (q)P = Qe Eq. 26

with

Me - o,T/1= /8}12 R'r

/aq_j

mew Eq. 27
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De(q,q):

a lo.'T/ ) a_"/
a_(o_./ a_,T/
dt_ /042)- /Oq2

dt _, / Oq,. J - / Oq,,

R'T+2 -0_-//

/o0,
ai_'T/

/.042R"-

o_';/ I
/aq.J

lti'r 0R _/_qt

ji,Taa'T/
/Oq2

_,_OR'T� I
/Oq.,J

meR' Eq. 28

([%
Ke(q) = /Oq2

oIxT/

/Oqm _

aRt/ I

RT+ lar /0q2 I k,R
I

it r ORr/ I
/aqm j

Eq. 29

Qe _

F_(Ri'_/q + 0/%ql Ill,)

F_ R q+OR .ll

Eq. 30

An expansion of each of these terms is listed in the appendix. Thus, Eq. 26 provides the equations of

motion for the tether element of Fig. 2. It now remains to perform an assembly process by which the

equations for all the elements forming the tether system are compiled.

2.2 Element Assembly:

The assembly procedure allows the entire tether system to be represented as a collection of elements,

with geometric compatibility maintained at all element nodes. Let fig. 3 represent a portion of the tether

system modeled as a collection of tether elements.
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Figure 3: Collection of elements forming the tether system

Each element is attached to the end node of the previous element and maintains continuity through

nodal displacement. As additional elements are added to the tether system, additional generalized

coordinates appear. For example, in this case of a planar tether system, two new generalized coordinates

occur with each additional element. Thus, the vector of generalized coordinates for a tether with n

elements is,

q=[x,_ x,r O, u, u 2 _92 --" 9 n un+,]r. Eq. 31

For a system with n elements, there are m = 3+2n generalized coordinates.

The equations of motion for the entire tether system are constructed through assembly of the individual

element equations of motion, while taking into account continuity at the nodal positions. The assembly

procedure can be observed by forming the total kinetic and potential energy and virtual work of the tether

system as a sum of the energies and virtual work contributed by each element.
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n

Ttether : "_ _.= lt' f R', r meiR' i #'i ,

Vtether= AlE i
.=

¢_Vtether : £ _fi(x,t)" LT_(Ri_i)dx

i=l

which leads to Lagrange's equations for the system,

-- - +CO /_0,%0) O'C./oo, =_k /oO_ , '

Eq. 32

Eq. 33

To make the individual elements compatible in the summation processes, a uniform set of descriptive

coordinates must be developed for each element, similar to Eq. 6 for the first element. Consider an

internal element, call it the ithelement, located along the tether (refer for example to Fig. 3). The position

of a point along the ithtether can then be given using the same form as equation 6,

with the displacement vector, g_ given as:

E i-I
.,-- x_+Xco_(o_Xl,+.j+,)

j=l

xpi = LrR/lti Eq. 34

T

1-1

x_+X_i,(o,Xl;+u;.,)1., .,+,
j=l

Eq. 35

and R_ the rotation operator for element i. Thus, the position of a point on the t_h tether element is a

function of the tether reference vector as well as all preceding nodal displacements and element

orientations. In a similar manner, the velocity of a point on the ith tether element is generalized to

become,

Xpi = LTR'i #'i Eq. 36

with R't a general operator that gives velocity orientation for element i and
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,-, ,-, ]T Eq. 37lti',= k_+__[-#jsin(OjXlj+uj._)+cos(Oj_j÷,] k,_+__[#jcos(OjXlj+%.,)+sin(O_)uj.,] #, #,u, #,u,., ,',, f*,.,
t=1 /=l

Using these general expressions for the position and velocity of reference positions for each element, the

equations of motion can be derived for the entire system through the summation process demonstrated

above, resulting in a general form for the equations of motion for the entire tether system,

Mit + D(q,q_l + K(q)q = Q Eq. 38

where q, q and q represent the generalized coordinates associated with the entire tether system, and given

in the general vector form as, q = [Xr,, X,r _l Ul U2 t92 U3 "'']r and the matrices, M,D, and

K and vector Q are coefficients of the generalized coordinates and their derivatives. These are found in

general through expanding the elements of Lagrange's equations for each element, shown for example for

element 1 in Eqs. 20-23, and then combining terms to result in the necessary coefficient matrices of the

generalized coordinates. The procedure is demonstrated in the appendix, with the M, D, and K matrices

and the vector Q expanded for a two element system. Note that since element rotation is decoupled from

the stiffness in the case of geometric linearity, the 0 associated terms in the generalized vector multiplied

by the stiffness matrix will be set to zero. With the general equation of motion generated for the tether

system, a solution approach used in tether simulation is presented next.

2.3 Solution of Equations of Motions

Eq. 38 provides a system of second order differential equations of motion of the tether system defining

the response of the generalized coordinates in time. Combining the shape functions and the nodal

displacements in time, the approximated response of the continuous tether system is observed. This

behavior of the rotating tether system in orbit is the point of interest in this work, and is solved using a

direct integration routine. A Runge-Kutta integration procedure with adaptive time step is selected and

employed for dynamic tether analysis.
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2.4 Element types used in the Tether MX model

2.4.1 Tether Element:

An element with a single longitudinal non-rigid-body degree-of-freedom is first employed in the planar

tether model. Elemental longitudinal stiffness and damping are associated with this non-rigid-body

degree-of-freedom. Each tether element is modeled with two nodes representing a linear shape function.

Rigid body motions of the tether element include rotation and translations in the orbital plane. Due to the

inability of the tether element to support compressive loads, a significant nonlinearity occurs when the

tether goes slack. Several models have been proposed to accommodate this nonlinearity, the simplest

approach is employed in this model by defining the element stiffness to go to zero when the element goes

slack,

= _ kei' li >_lam
k'i [0, l i <- letm

Eq. 39

Note that in the spinning tether configuration, the tether elements maintain positive tension at all times

due to centripetal acceleration forces and slack conditions are generally identified as unstable conditions

in the tether model.

2.4.2 Ballast and Capture Element:

The ballast or facility element represents a rigid body, ballast mass located at one end of the tether.

This element will be composed of an infinitesimally small member with mass localized at a common

node. Note that since the length approached zero, the stiffness approaches infinity, this is represented in

the global matrix with a single node. The mass of this element is also associated with a single node, and

the force effects of this element are derived for the single nodal position.

2.4 Tether Momentum Exchange
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Momentumexchangeoccursthroughtheprocessof capture,carryandreleaseof thepayload.Initial

captureof thepayloadis modeledasaninelasticimpactprocessbetweenthelastnodeof thecapture

elementandarigid lumped-masspayload.Therendezvousprocessis includedin thetethermodelin the

followingmanner.Thetethermodelis simulatedthroughintegrationforwardin timestartingfromaset

of initial conditionstoresultin afuturerendezvouswiththepayload.At thepointof rendezvous,timetr,

algebraic evaluation of the new velocities due to impact between the point mass payload and the mass

localized at the end of the tether is performed. This results in a new set of boundary and state conditions

that are used to update the tether model and continue the time integration of the tether model. Payload

release involves again an instantaneous change in the boundary conditions of the tether model. Note that

in general, the rendezvous process is considered to occur with the end of the capture device and the

payload having the same position and velocity, resulting in no net effect from impact. Error in either

position or velocity of the tether or payload would add additional dynamic effects to the system.

The remainder of this paper reports on some of the results from the simulation of the momentum

exchange process.

3.0 Analysis of Tether Capture and Release of Payload:

Using a simple FEA tether model, the capture process is simulated as follows. The tether simulation is

started and proceeds for a period of time sufficient to allow initial condition transients to die out.

Similarly, the payload is released and propagated in time in its proper orbit. Initial conditions of both the

tether and payload are selected to result in a rendezvous precise in space and time. The momentum

process begins when the payload enters the capture region of the tether and continues through the carry

and release process. For the general case, the capture occurs when the tether is at perigee and the tether is

aligned with the local vertical, the capture end pointing toward earth. The tether than carries the payload

through a predetermined angle and releases the payload, with both the payload and tether assuming a new
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trajectory. The simulation process records the data from the tether model including tether tension,

rotation rate, center of mass, and velocity. These results provide essential information in predicting

momentum exchange performance under ideal conditions, setting the bounds on required tether

propagation accuracy, and in providing design guidelines for design of the capture device. Results from

analysis in each of these areas follow. These results are based on tether and payload sizes published by

Hoyt [7], as shown in Table I.

Constants

Payload Mass (kg)

Capture Mass (kg)
Ballast Mass (kg)
Tether Length (m)
Cross Sect Area (mz)
p (kg/m 3)

P_Payloadorbit
Orbit Radius (m)
Vp (m/s)
Time for one orbit (s)

Table I: Tether and Payload Parameters
Tether Facility Orbit

3.986E+14
1000,2500
250
11000
80000
1.9635E-05

97O

6694275.739
7716.44186
5450.876936

Pedgee(m)
Apogee(m)
Timeforone omit(s)
SMA

Perigee Velocity (m/s)

Apogee Velocity (m/s)
o) of tether fac. (rad/s)

6,785,136.00
14,823_136.00
11,176.25

10,804,136.00
0.371987172
8977.690593

4109.444293
-0.013881192

3.1 Results From Tether Momentum Exchange Simulation

The momentum exchange analysis will demonstrate simulation of tether and payload rendezvous,

capture, carry and release, under ideal conditions. Here, ideal conditions imply that there is no error in

position or velocity of either the tether or payload. At the point of rendezvous, both the capture device

and payload have the same position and velocity. The tether produces and instantaneous application of

acceleration on the payload in the direction of the tether, resulting in increase in tether tension with much

smaller effects on transverse vibrations. The results from this ideal capture are shown in figs. 4-8.

Figures 4-6 show the tether orbit radius before and after rendezvous, with Figs. 5,6 zoomed to show

effects of capture and release. Figure 7 shows the payload orbit before and after rendezvous while fig. 8

gives a time history of the tether tension. Finally, Table 1] below summarizes the results of the orbits of
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the tether facility and payload before and after the momentum exchange process. Table II shows the

results for both a 1000 kg and a 2500 kg payload.

x 10T Orbital Radius of Tether FacUlty

1.5 : 1 : : : i i i i

1., .... i...... i..... _..... '_..... '_..... i..... J..... i.... i....

1.3 .... i..... _..... i..... i ..... '_.... 2 .... i..... _..... _....

1.2 ....................... i--

++'11,1........... ,
i.i .... J- --;

0 l 2 3 4 5 6 7 8 9 10

Time x 1o4

Fig. 4: Orbit Radius of Tether
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7
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iili:iii:i:ii:i:ii:ii:ilii
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Fig. 5: Orbit Radius of Tether

x 10' OYoilal P._us cf Tether Facility
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,.  iiiiiiiiiiiiiiiiiiiiiii .........
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Fig. 6: Orbit Radius of Tether
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6
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t
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x 106 Teem_n in Element 2
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Fig. 8: Tension in Tether elements

Table H: Summary of Tether and Payload Orbits

Pedgee

_ee _fitude

&_ogee _fitude

Pedod

Semi-major Axis

eccentricity

Perigee Velocity

A,pogee Velocity

((:leg)

Payload

Pre Catch

6693863

315727

6693863

Post Release

6789026

410890

97999789

tether Facility (1000 k_l Payload)

Pre Catch

6785077

406941

14823136

Post Release

6766417

388281

12830894

Tether Facility (2500

Pre Catch

6785077

406941

14823136

k9 Pa.yload)

Post Release

_763012

384876

11037967

315727 91621653 8,145000 6452758 8445000 4659831

5450 119354 11176 9653 11176 S357

6693863 10804106 9798655 10804106 _900490

0 D.3720 0.3095 0.3720 L2402

7717 B978 8783 8978 B549

7717 4109 4632 4109 5238

52394407

0.8704

10479

726

2.75 3.63

From the error free momentum exchange case several results are noted. First, general effects on the

tether orbit correspond to those published in the current literature (Hoyt [7], Bangham et al [5]).

However, the tether orbit is also affected by elastic material change during the capture and release

process. The tension undergoes a significant increase during both capture and release. The tether tension

is fairly stable before and after capture with small oscillations in amplitude due to tether rotation in the

gravitational field. At rendezvous, the tether experiences a significant spike in tether tension. Release

again causes a step input to the tether system, resulting in a damped transient response returning to the

free-tether steady-state conditions. The response of the tether during the momentum exchange process is
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largelydependenton the stiffness and damping characteristics of both the tether and capture elements.

An additional effect is the resulting tether orbit. As predicted, the tether facility loses altitude, primarily

at apogee. The orbit change in the tether facility for both the 1000 kg and 2500 kg payload is significant,

but gives the tether sufficient opportunity to reboost for future momentum exchange. A final

characteristic of the system is noted. The line of apisides of the tether is shifted at MX due a finite time

between capture and release and the elastic behavior of the tether system.

4.0 Summary

The momentum exchange process has been modeled using an FEA approach, with the basic processes

verified against current literature. The FEA model shown is based on the simplest single degree of

freedom tether element and accounts for dynamic effects due to the rigid body motion and elastic

deformation of the element. This model can be extended to multiple tether elements and allows for

specification of various element types. The paper then presents an analysis of the dynamic effects of the

momentum exchange process on a tether system and payload. This analysis demonstrates relative

stability in the process and confirms many of the previously reported results. It also demonstrates a

number of dynamic effects in the process such as longitudinal tether stretching and a shift in the line of

apsides. Finally, the paper demonstrates the ability of the tether model to boost a variety of payloads

given a sufficient time for reboost.
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Appendix:

The general displacement of a particle along element i is given as a combination of the interpolation

functions in the form,

Xpi : LrRiPi Eq. A1

with L, Ra, and _ given as,

lOxO l-x 0 Xo
Lr= I I

01 Ox 0 l-x 0
I

R i =

-1 0 0 0 0

0 1 0 0 0

O O cO_ 0 0

O O sO_ 0 0

0 0 0 cO_ 0

0 0 0 sO_ 0

0 0 0 0 cO_

0 0 0 0 sO_

Eq. A2

with sO_, cO_= sin(O 3, cos(O3 respectively. Similarly, the particle velocity will be cast in the general form,

Xpi = LTR'i #)i Eq. A3

with

li',=[k,_+ _[-_jsin(t_Xl,/=, +u/+t)+cos(6)')fi,.,] kq+ _[t_cos(t_Xl,/=, +uj+,)+sin(6_)fi,.,] t_, t)_u, t_u_+, h, h;.,]
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LT:E oxoL,o o]1 0 x 0 L I 0 L2 , R/'=

-1 0 0 0 0 0

0 1 0 0 0 0

0 0 s0_ 0 0 0

0 0 c0_ 0 0 0

0 0 0 -s0_ 0 c0_

0 0 0 cO_ 0 sO_

0 0 0 0 -sO_ 0

0 0 0 0 cO_ 0

0

0

0

0

0

0

c0i Eq. A4

sO i

Based on Eqs. 14 and 17, the local mass and stiffness matrices for each element are given as,

m, =pA
Eq. A5

ke

-0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 lAE 0 - AE 0 AE 0

0 0 0 lAE 0 - AE 0 AE
AE - AE

0 0 -AE 0 0 0
l l

AE - AE
0 0 0 -AE 0 0

l l
- AE AE

0 0 AE 0 0 0
I l

- AE AE
0 0 0 AE 0 0

l I

Eq. A6

and the local force vector is given as,

ILl fJ_f_t f,lr,=L f, _Lt Eq. A5

23



withf_,fytheforcecomponentsactingonelementi.

The elemental mass, stiffness matrices and velocity product matrices, M,l, K.i, D,_ resulting from the

components of Lagranges equations given in Eqs. 20-23 are found as,

Mei

Off" "
/00,

off," /
/ 01712

Oil'/�

I OOm_

tT t _

R_ m,Ri D,;=

d f.,.,r/ "_ .,rIOlli / _Olti /

-_( /Oq,. /Oq,
df.,.,r/ "_ .,r__le_ _/ _air f /
at ( /00,/ /Oq_

apc,'� '_od/

R'f+2

- 01i'ir/

/Oq,
o_'f/

/o02

oi.',T/
/o0._

"IT

R i -

• , r OR'f�
[l i /Oql

• , fOR'f/
P i '//Oq2

li'f 0R'f/
/Oqm

me/R' i

Kei =

o_f /
/Oql

Olaf/
/Oq_

Oltir /

/Oq.,_

T

R_ +

T /
,0Ri /

P' /Oq,
/

pit OR," /
_2

¢

.OR//
P_ t,.

k eiRi
Eq. A6

while the elemental generalized force vector is,

Otq
( +" )F a R, / °c4 yO0 p,

+"

Eq. A7

The system mass, stiffness and velocity product matrices are formed as combinations of the elemental

matrices in the fashion demonstrated in the following equations. These matrices contain the coefficients

of the generalized coordinate vector and its derivatives in the form

q:F- x,y O_ u, u 2 02 u,-..1.

The global mass matrix, M is generated as,
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n

M(:,I) = _-_ M_; (:,1)
l=l

n

M(:,2) = _-_ n,i (:,2)
i=l

n

M(:,3) = M,t (:,3) + uin,, (:,4)+ uxM,t (.',5) + _(t, + u2X- s,M,, (.-,1) + c,M,i(:,2))
i=2

M(:,4) = M,, (:,6)

n

M(:,5) = M,, (.',7)+ M,2 (:,6)+ _-" (c,M_i (:,1) + siM,, (:,2))
i=2

n

M(:,6) = M,2 (:,3)+ u2Me2 (:,4)+ u3Me2 (:,5)+ _-'_(12 + u3X- s2Mei(:,l)+ c2Mei (:,2))
i=3

The global velocity product matrix D is generated in a similar form as,

n

o(:,0=ED (:,0
i=1

n

o(:,2)=Zoo,(:,2)
i=1

n

D(:,3)= D_,(:,3)+ u,D., (:,4)+ u2D., (:,5)+ 2(I, + u2Xs,Dei(:,1)+ c,D.i (:,2))
i=2

+ _ (M,; (:,1 X- O_c,(/, +u_)- 2t_2s,) + M,i (:,2 X- Ons, (/, +u_)+ 2t_2c,) )
i=2

+u,M.,(:.4).
D(:,4) = D., (:,6)

n

D(:,5)= De1(:,7)+ D_2(:,6)+ 2(c,D_- (:,1)+ s,D_,(:,2))
1=2

n

D(:,6) = D,z (:,3) + u_De_ (:,4) + U3De2 (:,5)* E (/2 +/'i3 Xs2 D,/(:,1) + c2D,_ (:,2))
i=3

+ _(Ma (:,IX-t_2c2(/_ *u3)-2i_3s2)*M_(:,2_-O2s2(/2 +u3)+ 2ti3c2))
t=3

+ ti2M,2 (:,4) + a3M,2 (:,5)

Eq. A8

Eq. A9
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The global stiffness matrix, K is generated as,

n

K(:,0=EK,,(:,0
i=1

K(:,2)=ZK,,(:,2)
i=l

K(:,3)--0
K(:,4) = Ke, (:,4)

n

K(:,5) = K,, (:,5) + K,2 (:,4) + Z (K_. (:,l)c, + Kei (:,2)s,)
i=2

K(:,6)= 0

Eq. A10

and the generalized vector of forces,

(

Q=_-'Q_i =
i=I i=I

/c3ql lti)

F_,(R, c_lt'/ + t3Ri/ tti)/c_q_ /aq2

F_;( R_ c_lt'/ "+aR'//aq_ /_q, It,)

Eq. All

The system mass, stiffness and velocity product matrices and the total generalized force vector are

developed as an example for a simple two-element system. This system has three nodes, two elements,

and seven generalized coordinates. The results of this expansion are given in the following equations.

M: Eq. AI2

M(1,:):[2lp 0 _s,lp(l+u, +3u2) ½c, lp _lp(c, +3c:) :its2lP(-l*u2 *u3) {c2lP ]

M(2,:):[0 2lp {c,lp(3l+u, +3u2) ½s,lp {lp(s, +3s2) ½cflpO+u2 +u3) )s2lp]

M(3,:)=[_stlp(l+Ul +3u2) ½cllp(3l+ul +3U2) m33 ½C,12psl m35 m36 m37]

M(4,:):[½c, lp ½s, lp ½c, s,12p ½1p {lp 0 0]
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M(5,:)=[½lp(3c,+c2) ½1p(3s,+s2) m,3 _lp _lp(7+9c,c2+9s,s2) ms6 _Ip(7+3c, c2+3s, s2) ]

M(6,:)=[-½s2lp(-l+u2 +u3) ½c21p(l+u2 +u3) m63 0 -_c2s2120 m66 _C2Szl2p]

o  10]

with,

m33 = ½10012 - lu, + 2lu,c 2 + 41u 2 + 4lu2c21 + u_ + u,u 2 + 4u_ )

m35 = llp(4cl ls t - 9s_ lc 2 - 9sj u2c 2 + 9% ls 2 + 9% u2s 2)

m36=½O +u2)lp(-s,s21+ s, s2u2 + s, s2u3 +%c2l +c_c2u2 +clc2u3)

m37 =½(/+ u2)/0(- s_c2 + c, s2)

m53 =-_ lp(4ClS,l - 3slc2l + 3cts2l - 3sic2u2 + 3%s2u2)

ms6 = b/p(- 3%s21 - 2s2c2l - 3slc2l + 3%s2u 2 - 3slc2u 2 + 3cls2u 3 - 3slc2u 3)

m63 = ½(/+ u2)/p (- s, s2l + s, s2u 2 + s, s2u 3 + c, c2l + c, c2u 2 + c, c2u3)

m66=-_10(/2 -lu 2 +2c2lu2-21u 3 +4c2lu3 +u 2 +u2u 3 +u 2)

D: Eq. A13

D(2,:)=[0 0 -_Ip(2()ts, l+2ON2s,-5f*2c,-_,c,)0 0 ½1pc2(ti2+_,)0]

c,lp(l-u,-.,) "6t, ,lp(l+u,+u,) a,, d,4 a. a,o o]
D(4,:)=[-_lpOxs , ½lpOtc . -_lpO,(-l+2lc:+2u,+u2)0 0 0 0]

D(6,:)=[:_O2cJp(-l+u2+u3) _62s21p(l+u2+u,) d63 0 d65 d66 d67 ]

D(7,:)=[-_62sflp ½02c2lp dr,3 0 0 ½0f12p(-l+2c_)+-_O21p(u2+2u3)O]

with,

d,3 = _ Ip(4u,O,s, + 80,u2s, c,l - l O_2t - 4c_l/J 2 - 14ti2u 2 + lJ_l - 21illc_ - 21_Lu, - _,u 2 - ti2u , )

d,4 = -_Ol, lp(2c_ l - l - 2u, - u2 )

d35 = _61,lp(4c?l- 21- u, - 2u 2)

d36 = ½1p(41J21sjs 2 + lJzu2sls 2 +/_21ctc2 +/,12U2ClC2 + 1J318182 + I]13U2SIS2)

d53 = :_'tp (- 4tOtc?. + 802l - u,6_. + 40,u 2 + 3s,s202 l - 3c_c262l + 3s,s202u 2 - 3c,c202u2 ]
+ 3ctc201l + 3clc201u 2 + 6slc2tJ2 + 3sts2011 + 3sis261u2 - 6%s2/J 2 )
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=1 " " 2d,6 "glp(021 + 2021c 2 + 2u202 + u302 - 3it2sic 2 + 3it2sic z - 3_3cis 2 + 3_3s,c 2)

d63 =(l-l-u2_-lSlC2621P(-ll-u 2 +u3)-l cls2()2lp(I +u 2 +u3))-{s2lP(-I +u 2 +u3)

(-OlCl (l'u2 )+ 2it2Sl )+ lc2Ip(l+u2 +u3_-OlSl (l'u2 )+ 2t_2Cl)

a65 = -_-(),lp(- 2c_l +1 + 2u, +u3)-½c]O,lp(-I +u 2 +u3)-½s]O21pq +u, +u,)

d6, =-_s2c20,l'p(2u , +4u3)+_ft21p(-I + 2c_l + 2u 2 + u3)+ _31p(- 2l +4c_l + 2, + 2u,)

d67: _O,lp(- 4Ic_ + 21 + u, + 2u 3)

a,,=(l+u,£o,s,,,tp+-o,c,c,_p)+-_,,d-o,c,(,+u,)+2_,_,)

K"

K

000 0 0 0 0

000 0 0 0 0

000 0 0 0 0
AE -AE

0 0 0 0 0
l l

-AE 2AE -AE
000 0

l l l
000 0 0 0 0

-AE AE
000 0 0

l l

Eq. A14

Q:

Q

fx, + fz2

fyi + f y2

i.(_ +u,)]
L. (-f,=',+f,=c,Xz+uDj
-.(S..s.+S,,c,+s.,.,+S,_c,)

+ f,2sl + fy2 c'

"(-S,,,, + S,,_,)

,(-s,_,_+s,_c,Xt+u,+u,)
_(s,,c,+s,,s,)

Eq. A15
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Dynamics of a flexible, flying tether:

The dynamics of a flexible tether are evaluated through a continuous cable system model

undergoing axial vibration. This continuous system model considers longitudinal vibration

before, during and after a capture episode, and during and after a release episode. The model

system equations are derived from Fig. 1 as follows.

EA _J/#x

(EA +#(EAI/Sx dx)*(£,u/#x+ o_ulSx_ dx)

Fig. 1: Cable diagram and free body

The force balance for a small element of cable, dx is given as,

 2(x,+x., +u)a 

with u = u(x,O the tether displacement at location x and time t, E, A, and ,o the cable modulus,

area and mass per unit length. Assuming uniform tether properties and dividing through by dx

yields,

a'(x. +,,)
f(x,t)= p _t2 + EAr'S, Eq. 2

This displacement function represents the flexible-body motion of the tether, while xr and xel are

rigid body position vectors representing rigid body motion of the tether, f(x,O represents the

forces per unit length acting on the tether.

Next, a solution to the flexible tether dispacement function, u(x,t) is constructed as a sum of

mode shapes and time dependent generalized coordinates,
co

u(x,t)=__U,(x)q,(t)_. Eq. 3
r=-I

with Ur(x) representing the modes shapes of the tether. These mode shapes are derived as

solutions to the spatial differential equation,

d2U(x)//_2 -I-(0-_-_-52P-2P U(x) = 0 Eq. 4

as,

U(x)= C_ sin(fl_)+ C_ cos(fl_) Eq. 5



with fl-
EA

problem. For the free-flying MXER tether, consider the homogenous boundary conditions
associated with free-free tether ends. These are described as,

,_ a'(O,_ = 0

Solving Eq. 5 for coefficients C1 and (72 yields the following mode shape vector and natural

frequencies,

U,(_)-- B, cos(-V)

092/9 Coefficients C1 and (?2 are determined from the boundary conditions to the

Eq. 6

Eq. 7

Eq. 8

Eq. 9

Eq. 10

for r = 0, 1, 2, ... with r = 0 representing the rigid body mode of the tether.

The modes in Eq. 7 are normalized resulting in the normal modes for the free-free tether as

],2,...
/.----.-

U,
i a,

with the following normalizing functions employed,

f-p = 6,, r,s = 1,2,...

that also satisfy the function

= co,5,_, r,s = 1,2,... Eq. 11

With the mode shapes derived, the displacement solution form ofEq. 3 is substituted into Eq. 2

to result in,

mi, +m_txx,t + mto × to ×x,t + mZUr(x)q,O)J + m_txZu,(x)q,O)u + mto ×to x u,(x)q,O)J
=l _i _l Eq. 12

° - d%(x)
+2mtox_f'-'U'(xXl"(t)u+_f'-'q'(t)EA dx' _:f(x,,)

r=l r=-I

or

mZU,(x_,(t)_ + 2into x ZUt (x)q, (t)g -I- ff/([][ × -J-o) × i[o ×)_-"_ Ur (x)qr (t)_

_-I _-1 _l Eq. 13

+ £ q,(t)EA d'U,_x) _ = f(x,t)- re(i, + a xx,, + to × to xx,t )
_l dx

with _, _ the rigid body rotation rates and accelerations, xF a reference vector locating the tether

(fig. 1) and x_, a vector running along the tether from the reference point to the location of the

element of interest. Using the fact that the modes Ur(x) have been normalized based on Eq. 10

and satisfy Eq. 1 1, Eq. 1 3 can be multiplied through by Ur(x) and integrated over the tether

length, L as,



L ^ oo L ^ L2 Io__,(_)_,(_)_,(,_ +_mo×2 Iom_,(_,(x)_,('__+_ ("_+°_°_)Iom_,(x)_,(_,('__
r=-O r'-'-I r=-O

r=-O d_ 2 r

Eq. 14

Eq. 15

Eq. 16

To yield the following set of differential equations,

0,(,)_+2_,×0.(,)_++(_×+o,×,_×)q,(0_+o_,q,O)_=o,O)O.,
This vector set of equations can be decomposed into axial and transverse components as,

0.(,)+(-_'(,)+_o.)q.(,)--o..._(,)
the axial components and

O(,)(L(t)+O(t)q,(t)=Q,.__(t) Eq. 17

with ca, given in eq. 8, 0(t_/_(t) the scalar tether rotation rate and acceleration respectively, and

a,._o, (t), a,._,o,_ (t) the axial and transverse external forces and rigid body inertial effects

respectively with Qr (t) given as,

QrO)= _Lu,(x)(f(x,t)-m(i, +axx,, + _ xto xx,,))dx Eq. 19

for r = O, 1,2,...

The above equations, for example Eqs. 15 and 19 demonstrate the inherent coupling between the

rigid body motion and the elastic response. The response of the rigid body tether is considered

next.

Response of Rigid Body Tether:

The rigid body tether motion under the effects of a spherical gravity model is considered next. A

uniform, rigid tether is assumed in a planar orbit, as shown in fig. 2.

Figure 2: Uniform rigid tether in planar orbit.

The energy of the system with respect to the generalized coordinates is given as,
_ ! T

T - Tmt'Pt,cmVt,crn+ ½_2I t

V = - lamt

r,

with mr, the tether mass, It the tether mass moment of inertia, rt, vt and _ the position, velocity

and angular rate of the tether center of mass,

Eq. 20



r t = fire i_ + S_2e i0

V t = Xr el# d- Xri& i_ "t- _2 i&iO"

Lagrange's equations for the rigid body tether result as,

mt_ r - mtXrO 2 -t-

m, x r20 + 2m, x,Y:_O + (

In'n,(- xfisin(O-#))

'/ xJcos(O+t_,1 +

=0

Eq. 21

Eq. 22

= 0 Eq. 23

1 4 + I, i _- , ,o.= 0. Eq. 24

' '

Equations 22-24 present the tether rigid body motion, while eqs. 3 and i 6 give the elastic body

displacements of the tether. A method of evaluating the total elastic behavior of the tether

system is now considered.

Consider a tether system as depicted in figs. 1 and 2 starting with initial orbit and rotation

conditions, x_=6000000e _°, 0o=0, thetadot0 =. 13, thetaddot0=0, First, the rigid body motion of the

tether is evaluated, allowing the tether body angular rate to be observed. Equations 22-24 are

evaluated over a period of time with solutions for xr, 0 and _bevaluated. Plots of q, 0(t), d/(t) are

shown in fig. 3
tether angular rate
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-0.03
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2500
i I ! t -
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time (s)

Fig. 3, plot of example rigid body tether angular rate under steady-state conditions

From fig.

function,

3, the angular rate can be approximately described by the following sinusoidal

_}2 = c, cos(cot)+ c 2 Eq. 25



or as a taylor series expansion

(-I) _ t2_+,
(_2 = c,Z (2n+l) ! +c 2 Eq. 26

with c_=.0075, c2=.00275 and w = pi/75.

The general elastic response for u(x, 0 for a set of initial conditions can now be presented. First,

consider the solution for the generalized coordinates of Eq. 16. The homogenous solution to Eq.

16 is:

ql = a0

q2 = al

l--lCl "_=20)rI_2 JC_4(CI0)2 -]=(Cl q-O)r)2_4-l-... 1

211r + -I , Xs+...co,
with the general solution ofq given in the form

co

qh = _,an t_
n=-O

and ao, al coefficients determined from the initial value problem.

Eq. 27

Eq. 28

Using these solutions for the

homogenous problem and the method of variation of parameters, the particular solution for q is

given as

q=-ql(t)_ q2 (r)Q(r) dr + q2(t)J _ ql (r)Q(r)
q, (r)q,2 (r)_ q,l (r)q2 (r) ql(r)q,2(r)_q,l(r)q2(r)dr. Eq. 28

Finally, the elastic displacement of the tether is given as,

® q2 (r)Q(r) (t)f ql (r)q,2 (r)_ q, 1(r)q2 ( r'_dr]/A .Eq. 29u(x,t)=__ U,(x) -q,(t)_ q,(r)q,2(r)_q, (r)q2(r)dr+q2 q, (r)Q(r)
r

The solution for u(x,t) depends on the generalized forcing function, Qr. This depends on both the

external forces on the tether and the rigid body tether motion. Consider the distributed force to

be a constant gravitational load, fo and the rigid body motion given in the following section.

Then, the generalized forces become,

Q.(t) = _(fo -m2.,y)JLo cos(z-_-) dx- x[-_m(O-O')_ t cos(=_)xdx, r = 0,I, ...

or

O,(t):-2_-_m(O-(92r_222,r=,,3,... Eq. 20

substituting the value of Qr back into eq. 17 yields,

u(x,t)= _U.(xl-q,O) _ q2 (r)- 2'_/-_m(6/- 02) L--_-_

r2/t .2

_1 q, (r)q'_ (r)- q', (r)q2 (r)

Eq. 19

-- . . ., q, (r)- 2_-_m(O'- O2 )r_, 1

dr+q2(t)J q, (r)q,2 (r)_ q, (r)q2(r) d Jr

This equation can be expanded for the first relevant modes and evaluated


